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Summary 
Background Interpersonal contact has a crucial role in the transmission of infectious diseases. Characterising het
erogeneity in contact patterns across individuals, time, and space is necessary to inform accurate estimates of 
transmission risk, particularly to explain superspreading, predict differences in vulnerability by age, and inform 
physical distancing policies. Current respiratory disease models often rely on data from the 2008 POLYMOD study 
conducted in Europe, which is now outdated and is potentially unrepresentative of behaviour in other geographical 
regions. We aimed to understand the variation in contact patterns in the USA across time, spatial scales, and 
demographic and social classifications during the COVID-19 pandemic, and to estimate what social behaviour looks 
like at baseline, in the absence of an ongoing pandemic. 

Methods For this study of contact patterns relevant to respiratory transmission during a pandemic, we examined 
10⋅7 million responses to the US COVID-19 Trends and Impact Survey between June 1, 2020, and April 30, 2021 
(ie, during the COVID-19 pandemic); the survey recruited participants aged 18 years and older in the USA through 
Facebook. Data were post-stratified by age and gender to correct for sample representation. We used generalised 
additive models to characterise spatiotemporal heterogeneity in respiratory contact patterns during the pandemic at 
the county-week scale; we established how contact patterns vary by urbanicity, age (18–54 years, 55–64 years, 
65–74 years, or ≥75 years), gender (male or female), race or ethnicity (Asian, Black or African American, Hispanic, 
White, or other), and contact setting (work, shopping for essentials, social gatherings, or other). We used a regression 
approach to estimate baseline (non-pandemic) contact patterns. 

Findings Although contact patterns varied over time during the COVID-19 pandemic, the average number of daily 
contacts was relatively stable after controlling for the effect of incidence-mediated risk perception and disease-related 
policy. The mean number of non-household contacts was spatially heterogeneous, varying across urban versus rural 
settings, regardless of the presence of disease. Additional heterogeneity was observed across age, gender, race or 
ethnicity, and contact setting. Mean number of contacts decreased with age for individuals older than 55 years and 
was lower in women than in men. During periods of increased national incidence of disease, the contacts of White 
individuals and contacts at work or social gatherings showed the greatest change. 

Interpretation Our findings indicate that US adult baseline contact patterns show little variability over time after 
controlling for disease, but high spatial variability regardless of disease, with implications for understanding the sea
sonality of respiratory infectious diseases. The highly structured spatiotemporal, demographic, and social heterogeneity 
in contact patterns reported here could inform the risk landscape of respiratory infectious disease transmission in the 
USA and the implementation of targeted interventions, and our county-level estimates of non-pandemic contact rates 
could fill gaps in parameterising future disease models. 
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Copyright © 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND 
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Introduction 
The transmission of respiratory infectious diseases via 
direct or droplet routes requires close contact. Research 
over the past two decades has shown that human contact 
patterns are highly variable between individuals and across 
geography,1,2 and highlighted the consequences of this 
variability for epidemic outcomes and dynamics.3 However, 
to date, detailed empirical data on contact patterns across 
the USA have not been available. This lack of data leaves 

several important gaps in our understanding of the drivers 
of disease transmission. For example, knowing what factors 
(eg, age, season, or location) influence contact patterns 
across the USA, and how these factors contribute to vari
ability in infection risk, is essential to design targeted 
interventions and to generate accurate estimates of trans
mission risk across individuals, space, and time. 

Most infectious disease models assume homogeneous 
mixing among individuals—ie, all individuals have the 
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same contact rate and the same ability to transmit disease. 
Homogeneous mixing models have transformed the pre
diction and control of disease outbreaks (eg, through esti
mation of the time-varying effective reproduction 
number4), but produce epidemic dynamics and outcomes 
that differ from those of models that incorporate hetero
geneities in contact patterns.3,5 The POLYMOD study, 
published in 2008, was the first extensive survey to char
acterise heterogeneities in routine contact patterns relevant 
to the transmission of respiratory infectious diseases. The 
data, from eight European countries, suggested that indi
vidual contact rates are not homogeneous but have a heavy- 
tailed distribution and are highly assortative by age.1 

POLYMOD estimates have been used to understand epi
demic dynamics, design vaccine strategies, and predict 
intervention outcomes;6–10 however, they did not capture 
dynamic behaviour in the presence of disease. To fill this 
gap, the CoMix study was conducted during the COVID-19 
pandemic to collect contact data contemporaneous with 
disease across Europe;11,12 estimates from the study were 
incorporated into forecasting efforts in the UK, with mixed 
results.13 Notably, neither survey captured fine-scale tem
poral variability or social heterogeneity in contact, and they 
might not be representative of behaviour in the USA. 

Beyond individual heterogeneity, there are several 
meaningful dimensions across which contact patterns 
might vary. Spatial heterogeneity in human behaviour has a 
crucial role in disease dynamics;14–17 if contact patterns 
exhibit such heterogeneity, this could explain observed 
hotspots of disease burden or the dynamics of disease 
spread. Likewise, changes in contact patterns over time 

could contribute to the seasonality of respiratory infectious 
diseases.18,19 Contact might also vary with surrounding 
disease transmission, as individuals shift their behaviour to 
mitigate risk. These potential heterogeneities in contact 
patterns profoundly affect our understanding and predic
tion of epidemic dynamics and our ability to target behav
ioural interventions; however, few empirical data exist on 
such heterogeneities. To identify the dimensions across 
which contact meaningfully varies, high-resolution contact 
data are needed across geography, time, demography, 
and social classifications and in the context of disease 
transmission. 

Contact patterns in the USA have gained increasing 
attention over the past 5 years. In addition to small or 
indirect earlier studies,20,21 several more recent studies have 
provided insights into variations in contact patterns across 
multiple dimensions. Breen and colleagues22 showed that 
pandemic contact patterns in the USA vary between states, 
but they were unable to characterise spatial heterogeneity 
at finer scales, even though other public health-related 
behaviours have been found to vary at the county level.23,24 

Dorelien and colleagues25 used time-use surveys to show 
that baseline contact patterns in urban and rural areas 
might not differ, despite the perception that urban inhab
itants have more contacts. Regarding temporal variation in 
contact, one study conducted before the COVID-19 pan
demic found no variation in adult contacts over time,25 

whereas another observed changes over the study period 
of September to May.20 Many studies have found that con
tact is higher in younger adults (typically 18–44 years old), 
men, and non-White populations, although which race or 

Research in context 

Evidence before this study 
We searched Google Scholar for social contact data in the USA 
covering time periods during and before the COVID-19 pandemic, 
published in English from database inception to Feb 1, 2024, 
using the search terms “contact patterns”, “social contact data”, 
“disease-relevant contacts”, “change in contacts pandemic”, 
“urban rural social contacts”, and “seasonality in contact 
patterns”. We reviewed the bibliographies of the retrieved articles 
and included known literature not found through our searches. 
We excluded studies that used mobility data, focused on children, 
or excluded the USA. Previous work has been limited to the state 
scale or to subsets of counties (eg, focused on a few cities, a single 
state, or a few counties within a state) rather than including all 
counties in the USA. 

Added value of this study 
To our knowledge, we contribute the first high-resolution contact 
estimates for the USA during the COVID-19 pandemic and infer 
non-pandemic contact patterns at fine spatial and temporal 
scales. Our results indicate that the number of contacts per person 
per day is fairly stable over time after controlling for the effect of 
incidence-mediated risk perception and disease-related 

policy (ie, in the absence of major disease), suggesting that the 
number of contacts is not a primary driver of respiratory infectious 
disease seasonality in the USA. We also identify groups at the 
greatest risk of disease owing to their high number of contacts, 
including younger adults (aged 18–54 years), men, Hispanic 
individuals, and Black individuals. 

Implications of all the available evidence 
This study shows the importance of incorporating age-specific 
contact patterns and the spatial heterogeneity of contact patterns 
into future disease models to build accurate estimates of 
transmission risk. We show that temporal variability in contact 
patterns is insufficient to drive the seasonality of respiratory 
infectious disease, that adaptive behaviours in response to disease 
shift risk along an urban–rural gradient, and that some vulnerable 
groups are at increased risk of exposure owing to their increased 
numbers of contacts. We advocate that geographical and social 
heterogeneity in exposure to disease as a result of differing 
contact patterns be captured more comprehensively to facilitate 
accurate predictions of infectious disease dynamics and effective 
and equitable disease mitigation. 
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ethnicity group had the highest contact rate varied by 
study.20,26–28 Because these previous studies were limited in 
terms of sample size or resolution, they are constrained in 
their ability to comprehensively characterise hetero
geneities in contact patterns across space, time, and social 
groups. 

Now that the US COVID-19 Public Health Emergency 
has ended, it is necessary to characterise contact patterns 
not only during the pandemic but also under non-pandemic, 
baseline conditions. In general, physical distancing 
during the pandemic reduced overall contact.29 However, 
previous work has shown that adherence to physical 
distancing guidelines was heterogeneous across pop
ulations, driven in part by health disparities and social 
inequities that affect the ability of individuals to engage in 
behavioural interventions30 and by a patchwork of non- 
pharmaceutical interventions (eg, school closures, work
ing from home, gathering bans, and mask requirements) 
implemented at various spatial scales. For example, urban 
areas showed greater reductions in mobility and, there
fore, probably greater reductions in contact than rural 
areas.31 Individuals of higher socioeconomic status are 
known to have had greater flexibility in their mitigation 
behaviour and could further reduce contacts. 
Understanding which groups and locations are at the 
highest risk of infection during pandemics and seasonal 
epidemics is crucial for targeted public health surveillance 
and resource allocation, but requires detailed contact data 
disaggregated by location, age, gender, and race or 
ethnicity. 

Here, we aimed to address these gaps by developing fine- 
scale spatiotemporal estimates of mean non-household 
contacts in adults. We used an extensive national survey 
with more than 10 million responses collected at the county 
level to characterise several heterogeneities in contact pat
terns throughout the pandemic and infer non-pandemic 
contact patterns. We focused on four central questions: 
How does mean contact vary over time? How does mean 
contact vary across geography in urban versus rural set
tings? How do contact patterns vary across age, gender, and 
race or ethnicity classifications? What are contact patterns 
like under non-pandemic, baseline conditions? Our results 
are, to our knowledge, the most comprehensive high- 
resolution estimates of US contact patterns to date, and 
could inform future disease models in the USA, provide 
insight into local and temporal variation in behaviour in 
response to public health messaging, and contribute to our 
understanding of the drivers of respiratory infectious 
disease seasonality. 

Methods 
Study design 
This study was designed with the aim of characterising 
heterogeneities in non-household contact patterns relevant 
to respiratory infectious disease transmission across time, 
spatial scales, and demographic and social classifications 
during a pandemic and at baseline in the USA. We analysed 

data from the US COVID-19 Trends and Impact Survey 
(CTIS)32—a large, cross-sectional survey conducted in all 
50 states of the USA and the District of Columbia—from 
June 1, 2020, to April 30, 2021. We focused on non- 
household contacts because they have a crucial role in the 
dynamics of casual contact infections.33 To explore vari
ability in contact patterns over time, particularly during the 
autumn to spring period when seasonal changes are 
expected,34 we developed two statistical models. In the first 
model, we address noise and representation issues in the 
data to estimate pandemic contact patterns. In the second 
model, rather than capturing all sources of heterogeneity, 
we aim to parsimoniously account for pandemic-related 
effects to estimate non-pandemic contact patterns. We 
hypothesised that if temporal variability in contact is fully 
explained by disease incidence-mediated risk perception 
and intervention-related changes in behaviour, then base
line behaviour should be temporally stable. This study was 
reviewed by the Institutional Review Board at Georgetown 
University (Washington, DC, USA) and was determined 
not to be human subjects research. 

Survey data 
The CTIS was created by the Delphi Group at Carnegie 
Mellon University (Pittsburgh, PA, USA) to monitor the 
spread and impact of the COVID-19 pandemic in the USA, 
and was distributed through a partnership with Facebook. 
Beginning on April 6, 2020, a random, state-stratified sample 
of active Facebook users aged 18 years and older were invited 
daily to take the survey about COVID-19 and report how 
many people they had direct contact with outside their 
household. The survey used a well established definition of 
contact relevant to respiratory disease transmission—“a 
conversation lasting more than 5 minutes with a person who 
is closer than 6 feet away from you, or physical contact like 
hand-shaking, hugging, or kissing”—and therefore offered 
an advantage over GPS location-based mobility data to 
characterise contact patterns; previous work has also shown 
that social contact data are more predictive of transmission 
than mobility data.35–37 Contacts were disaggregated by set
tings outside the home in the survey question: work, 
shopping for groceries or other essentials, social gatherings, 
or other. We analysed the sum of contacts across all settings 
starting on June 1, 2020 (to capture stabilised pandemic 
patterns beyond the acute disruption during spring 2020). 
We removed responses from individuals with more than 72 
contacts in the past 24 h (the 95th percentile) and conducted 
sensitivity analyses of this truncation point (appendix pp33–36). 

Age, gender (male, female, non-binary, prefer to self- 
describe, or prefer not to answer), and race or ethnicity 
(American Indian or Alaska Native, Asian, Black or African 
American, Hispanic, Native Hawaiian or Pacific Islander, 
White, or multiple or other race) were self-reported in the 
survey, and the survey data are representative of the overall 
US population in terms of age, sex, and race or ethnicity 
(appendix p 45). Race or ethnicity was categorised into 
Asian, Black or African American, Hispanic, White, or 

See Online for appendix 
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other for the analysis; all categories except Hispanic were 
considered non-Hispanic. To adjust for unrepresentative 
sampling at the county scale, we generated response 
weights to match county age and sex distributions and post- 
stratified the data (appendix p 1). To conduct raking with 
American Community Survey data, which is based on sex, 
we had to assume that sex and gender were equivalent and 
binary (which comprises 98% of the data). Owing to limited 
sample size and inappropriate entries, we could not 
consider responses with genders outside of this binary 
construct, which we recognise as a limitation. As data on 
race or ethnicity were not available throughout the full 
study period (these data were collected only from Sept 8, 
2020 to the end of the study period), we could not include 
them in the raking procedure for all estimates. To test the 
sensitivity of our estimates to the inclusion of race or eth
nicity in the raking weights, we compared mean contact 
estimates at the state-month level for Sept 8, 2020, to 
April 30, 2021 (appendix p 29). We additionally account for 
race or ethnicity in the raking weights for any analyses 
specific to these characteristics. 

County urbanicity was determined using the 2013 
National Center for Health Statistics (NCHS) Urban–Rural 
Classification Scheme for Counties, in which class 1 indi
cates a large central metropolitan area and class 6 represents 
rural non-core areas.38 

Spatiotemporal contact estimation 
To address weekly noise and low sample sizes in the data, 
we estimated smoothed county-week mean non-household 
contacts per person per day with hierarchical generalised 
additive models. Such models, which fit arbitrary smooth 
curves to data,39 are a popular form of regression, especially 
for time series modelling.40,41 The mgcv R package for 
fitting generalised additive models was designed for flexible 
and efficient estimation with structured time series 
data,39,42,43 accounting for partial observations and dropout, and 
literature on the application of mgcv in this area is robust. 

We use penalised thin-plate splines weighted by sample 
size with a weekly smooth for each state and a factor smooth 
for each county within the state, with shared smoothness 
parameters across counties. Information is therefore 
shared within but not between states; estimates are penal
ised to the state average, which could be biased towards 
urban counties. We chose thin-plate regression splines 
because they have appealing theoretical properties: they 
have the best theoretical performance in terms of mini
mising mean squared error relative to the objective func
tion and, unlike cubic regression splines, are knot-free.39 

Thin-plate splines do not require user-specified knot posi
tions, instead requiring only sufficient basis dimension. 

The model is structured as follows: 

ci,t = β0 + fs(t) + fi(t) + εi,t 

where 

fj(t) = ∑
K

k=1

βj,kbj,k(t),

and ci,t represents mean contact for each county i and week t. 
The smooth function fj is a penalised thin-plate regression 
spline, with j as state s or county i level,42 and εi,t is a Gaussian 
error term. The coefficients βj,k are estimated for each of the 
K basis functions bj,k. 

We fit separate generalised additive models to estimate 
contact by age (18–54 years, 55–64 years, 65–74 years, or 
≥75 years), gender (male or female), race or ethnicity 
(Asian, Black or African American, Hispanic, White, or 
other), and contact setting (work, shopping for essentials, 
social gatherings, or other) at the county (or state, for race or 
ethnicity) level during the pandemic period; for additional 
details, see the appendix (pp 1–3). 

Baseline contact estimation 
To infer contact patterns in the absence of a pandemic, we 
used a linear regression model of weekly contact (as esti
mated using the generalised additive models) predicted by 
national case incidence,44 state-level policy stringency 
(measured via the Oxford Stringency Index45), county-level 
policy stringency (calculated as the sum of various ordinal 
county policies46–52), and percentage of the county vacci
nated against COVID-1924 (appendix p 26). We propose that 
changes in behaviour are driven by how people perceive 
risk, and that this perception is largely shaped by reported 
disease incidence. To test this, we compared a subjective 
measure of perceived risk (from a different CTIS question) 
and found that disease incidence was a stronger predictor of 
behaviour than self-reported risk (appendix p 46). We also 
considered the role of incidence information across scales 
(county, state, and national), finding that state and national 
incidence were highly collinear, and county incidence was 
less informative than national incidence (appendix p 46). 
The Oxford Stringency Index captures the extent of policy 
limitations on human behaviour, including school, work, 
and transit closures; stay-at-home requirements; and travel 
restrictions45 at the state level. The county policy variable 
comprised county-level restaurant and bar closures, mask 
mandates, gathering bans, and stay-at-home orders; for 
additional sensitivity analyses related to the policy variables, 
see the appendix (pp 38–39). We hypothesised that increa
ses in disease incidence would lead to a linear decrease in 
contact rates, which is supported by the survey data 
(appendix p 24). The model is as follows: 

ci,t = β0,i + β1,idn,t + β2,ivi,t + β3,ips,t + β4,ipi,t+

β5,idn,t × vi,t + εi,t 
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where c represents mean contact; i represents each county, 
s each state, and n the nation; t represents each week; 
d represents the 4-week rolling average (mean of the pre
vious 3 weeks and the current week t) of national incident 
cases; v represents the cumulative percentage of the 
population that is vaccinated for COVID-19; ps represents 
the Oxford Stringency Index centred at the minimum value 
observed in the regression period for each state; pi repre
sents the sum of county-level policy metrics centred at the 
minimum value observed in the regression period for 

each county, and ε is normally distributed with a mean of 
0 and a variance of σ2. Note that counties are not pooled 
together, which enables us to capture differences in 
county-level responses to disease and policy metrics. 
Additional model selection details can be found in the 
appendix (p 46). 

Contact after controlling for disease (bi,t) was defined as 

bi,t = ϕi(β0,i+εi,t),
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Figure 1: Contact dynamics observed over time during the COVID-19 pandemic and estimated non-pandemic contact dynamics, by county 
(A) Mean number of daily non-household contacts for individual counties over time during the COVID-19 pandemic. Contact is presented as a Z score relative to each 
county’s mean to allow comparison between time series despite the large range of mean contact values across counties. Each line represents a county and is coloured by 
mean contact relative to the national mean. The black line shows the Z score of the centred 3-week rolling average of national COVID-19 case incidence for context. 
Counties had similar contact dynamics over time: most counties had higher contact during the summer of 2020, and all had lower contact during the winter of 2020–21. 
Counties in which contact decreased in the summer of 2020 were typically in states that had a higher incidence of COVID-19 during that time. (B) Mean contact rate (non- 
household contacts) in the absence of disease (baseline; slate) was effectively constant over time, compared with observed contact during the pandemic (teal), across a 
diverse set of counties. We controlled for disease using a linear regression model that predicts contact from national case incidence, state and county policy data, and 
county vaccination coverage. This analysis is restricted to Oct 1, 2020, to April 30, 2021, to encompass a full wave of COVID-19. Shaded areas represent 1 SD above and 
below the fitted contact value or estimated non-pandemic value. 
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where 

ϕi =
ω2019,i

ω2020,i 

and ωy,i is defined as the mean number of trips into or 
within a given county i for October to December of year y. 
We added the residual from the linear regression model 
to account for temporal changes in contact not captured 
by the incidence and policy data. The mobility data were 
obtained from the SafeGraph Social Distancing dataset.53 

We scaled by pre-pandemic mobility data to account for 
the substantial decrease in contact after the introduction 
of SARS-CoV-2 into the USA. Although mobility data do 
not directly measure contact, they are a reasonable proxy 
for contact as they are highly correlated (appendix p 23). 

We fit separate regressions to estimate contact by age, 
gender, race or ethnicity, and setting at the county or state 
level for non-pandemic conditions. These models enable us 
to estimate baseline contact for each demographic or social 
group by estimating the effect of disease-mediated risk 
perception and policy. 

This analysis was limited to the period from Oct 1, 2020, 
to April 30, 2021, to encompass a full wave of COVID-19 in 
the USA. Diagnostics for these regression models are 
provided in the appendix (pp 29–31). 

Role of the funding source 
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report. 

Results 
We characterised heterogeneities in average daily contact 
patterns in the USA at the county-week scale from June 1, 
2020, to April 30, 2021, using 10⋅7 million valid responses 
from the CTIS32 (appendix p 19). Contact varied across the 
pandemic period, although most counties had similar contact 
dynamics: increased contact during June–August, 2020 and 
in April, 2021, and decreased contact from September, 2020 to 
March, 2021 (figure 1A). In some counties—predominantly 
in Florida, Arizona, Texas, and other parts of the southern 
USA—contact was also reduced in the summer of 2020, 
coinciding with a COVID-19 surge in the region. This variation 
appears to be inversely related to SARS-CoV-2 incidence. 

We explored this association using regression models 
incorporating national case incidence, state and county 
policies, and county vaccination coverage to predict contact 
from Oct 1, 2020, to April 30, 2021. After controlling for the 
effect of disease on behaviour, contact was temporally stable 
across counties (figure 1B), and remaining fluctuations were 
neither substantial nor systematic. We validated this 
regression approach by using disease trends from May 16, 
2021, to June 25, 2022 to predict contact patterns, then 
compared these predictions to actual contact avoidance data 
from a separate CTIS question and found consistent results 

(appendix pp 42–44). Therefore, our baseline contact estimates 
can be interpreted as conservative predictions for non-pandemic 
contact beyond the acute phase of the COVID-19 pandemic. 

Mean non-household contact was spatially heteroge
neous during the pandemic (figure 2A) and in the absence 
of a pandemic (figure 2B). During the pandemic, the 
highest degree of contact was observed across the central 
and southern USA, whereas the lowest contact rates were 
observed along the north Atlantic and western coasts. By 
contrast, under baseline conditions, we found a different 
geographical pattern of contact rates. We investigated these 
geographical patterns by considering the association 
between contact and urbanicity. During the COVID-19 
pandemic, respondents in the most urban US counties 
(NCHS class 1) tended to have fewer contacts than those in 
more rural counties (figure 2C). This difference was elim
inated by controlling for disease (figure 2C), suggesting 
that individuals in urban counties are expected to have 
slightly more contacts than rural residents under this con
tact definition in non-pandemic situations. These results 
are robust to truncation in the reported number of contacts 
(appendix pp 33–36). 

Contact also varied across demographic and social clas
sifications during the pandemic and at baseline. Older 
respondents tended to have fewer contacts: individuals aged 
between 18 years and 54 years reported similar numbers of 
contacts on average across the study period, whereas the 
contact rate decreased past the age of 55 years (figure 3A, 
appendix p 40). Men tended to have more contacts than 
women (figure 3B), whereas Hispanic respondents had 
the most contacts and Asian respondents had the fewest 
(figure 3C). The highest number of contacts occurred in 
work settings, followed by when shopping for essentials 
(figure 3D). Using separate regression models and 
county-specific mobility data, we inferred baseline 
contact rates for each social category. Although respon
siveness to disease incidence varies within social classi
fications (eg, men vs women; appendix p 27), the trends 
within classifications stay the same from pandemic to 
baseline contact across all the different social categories 
(age, gender, and race; figure 3). Our baseline estimates 
are consistent with those from other studies (appendix pp 3–6). 
During the pandemic, contact estimates were more 
variable across studies, potentially owing to differences 
in contact definition, survey design, or survey period 
(appendix pp 7–18). 

Discussion 
Interpersonal contact is required for the spread of directly 
transmitted pathogens such as SARS-CoV-2. Nevertheless, 
contact patterns are poorly understood and difficult to 
predict. Previous contact studies have focused on European 
nations and measured contact at coarse spatial and tem
poral scales.1,22,28,54 These broad scopes leave open questions 
about how contact patterns vary subnationally, across sea
sons, and between demographic and social classifications. 
Here we estimated non-household contacts at the county- 
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week scale in the USA using responses from a large 
national survey during the COVID-19 pandemic (June 1, 
2020, to April 30, 2021). We used post-stratification and 
generalised additive models weighted by sample size to 
address sample representation and size issues. We com
pared our findings with those from several smaller previous 
studies and found consistent patterns. We also used a 
regression approach to infer non-pandemic contact pat
terns by controlling for the effect of disease and pandemic 
interventions. Our findings have several implications for 
public health researchers and policy makers and could 
facilitate the much-needed improvement of future disease 
models and interventions in the USA. 

We found that most communities exhibited similar 
temporal dynamics during the early COVID-19 pandemic, 

in which contact rates had an inverse relationship with 
disease incidence. After controlling for the effect of inci
dence-mediated risk perception and disease-related policy, 
we observed little variability in contact patterns over time, 
suggesting that changes in numbers of contacts cannot 
explain the seasonality of respiratory infectious diseases. 
Although contact has been shown to differ between sum
mer and winter in other countries,19,55 our results show that 
contact does not vary meaningfully from autumn to spring, 
the crucial period during which respiratory diseases 
emerge and diminish in temperate climates. As such, the 
role of contact in disease seasonality warrants further study. 
Our analysis period was limited to 6 months, which might 
not capture full annual seasonality; longer-term work 
should investigate whether these trends remain over 
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Figure 2: Spatial heterogeneity and urban–rural gradient of pandemic and estimated non-pandemic contact 
(A) Mean number of non-household contacts per person per day for each county relative to the national mean (8⋅7 contacts per person per day) during the COVID-19 
pandemic (Oct 1, 2020, to April 30, 2021). There was high spatial heterogeneity in contact, even within states, which was fairly consistent across time (appendix p 28). 
Counties shaded in grey did not have a sufficient sample size to estimate contact. (B) Map of inferred mean number of non-household contacts per person per day for 
each county relative to the national mean (10⋅9 contacts per person per day) in a non-pandemic scenario. Spatial heterogeneity in contact remains high, although which 
counties have values above and below the national mean has shifted compared with the pattern observed during the COVID-19 pandemic. (C) The mean contact rate 
(non-household contacts) for each county decreases with increasing urbanicity during the pandemic, but increases with urbanicity during inferred non-pandemic times. 
Only counties with ten or more responses per week each week (from Oct 1, 2020, to April 30, 2021) are included. NCHS class describes the urbanicity of the county, with 
1 indicating a large central metropolitan area and 6 representing rural, non-core areas. NCHS=National Center for Health Statistics. 
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multiple years and be used to validate our inferences. 
Notably, the survey question we used did not differentiate 
between indoor and outdoor contact nor whether or not 
individuals were wearing masks; the setting of human 
contact is known to affect the likelihood of transmission 
and has been shown to be seasonal.34 Therefore, with the 
data presented here, we hypothesise that the setting of 
contact could be a larger driver of seasonality than the 
number of contacts. Our finding also reinforces other work 
showing that fine-grain temporal data might not be 
necessary for incorporating behaviour into infectious 
disease models.56 However, our hierarchical generalised 
additive model makes county trajectories within a state 
more similar by pulling county-level trends towards 
shared state-level trends, potentially reducing the spatial 
and temporal variation in our contact estimates. 

The high spatial heterogeneity in contact patterns that we 
observe enables us to identify areas at increased risk of 
respiratory transmission during seasonal epidemics and 
pandemics due to high contact rates, such as the southern 
USA. This result also highlights the importance of high- 
resolution spatial data: the high variability in contact within 
states would be obscured if data were aggregated to the state 
level. We found that people in urban counties had fewer 

contacts on average during the pandemic than those in 
rural counties, which is unsurprising given evidence that 
urban counties were more responsive to pandemic 
restrictions.26,29,31 Under baseline conditions, however, we 
found that people in urban areas had more contacts on 
average than those in suburban or rural areas, which is 
consistent with behavioural heuristics based on population 
density. Previous research has not found a consistent 
relationship between population density and contact rate, 
both outside the USA57–59 and within the USA.25,29 This 
discrepancy might be explained by differences in contact 
definition; definitions that are tied to density are likely to be 
more representative of aerosol transmission. Given that 
geographical variation in disease risk creates challenges for 
disease surveillance, mitigation, and public health com
munication, further investigation into the role of spatial 
heterogeneity in behaviour is warranted. 

Understanding which groups have high rates of contact 
is essential for the development of more precisely tar
geted interventions and to address public health dispar
ities arising from structural inequities. Although the 
nature of the CTIS precludes any analysis of contact 
assortativity or clustering, we can identify demographic 
and social classifications at greater risk due to higher 
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Figure 3: Contact by age, gender, race or ethnicity, and setting during the pandemic and at baseline 
(A) Mean pandemic and baseline non-household contact rate by age. Each point represents a county-age category. Analysis was limited to counties with five or more responses per age category per week. 
(B) Mean pandemic and baseline non-household contact rate by gender. Each point represents a county-gender category. Analysis was limited to counties with five or more responses per gender category 
per week. (C) Mean pandemic and baseline non-household contact rate by race or ethnicity. Each point represents a state-race or ethnicity category. Analysis was limited to states with ten or more responses 
per race or ethnicity category per week. All racial and ethnic categories are non-Hispanic unless labelled otherwise. Other denotes individuals who reported their race as American Indian or Alaska Native, 
Native Hawaiian or Pacific Islander, or other, or as falling in multiple categories. (D) Mean pandemic and baseline non-household contact rate by setting. Each point represents a county-setting. Analysis was 
limited to counties with ten or more responses per setting per week. 
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contact rates. Indeed, degree (or number of contacts) has 
been shown to be the most important predictor of disease 
risk compared with other metrics.3 Like other studies with 
smaller sample sizes, both pre-pandemic and during the 
COVID-19 pandemic, we found that older adults had 
fewer contacts than younger adults.1,27,28,60 However, a 
limitation of our study (and most other contact studies) is 
a lack of data on children (aged <18 years). We also found 
that men had more contacts than women during the 
pandemic, as other national USA surveys have shown.27,28 

Our non-pandemic model shows that this difference 
persists under baseline conditions, in contrast to findings 
from a US study during the 2007–08 influenza season,20 

which could be a result of increased contacts by women 
in the home, and from the POLYMOD study,1 in which no 
meaningful difference in contact was found between 
genders. Additionally, we found that Hispanic individu
als had the highest contact rates during the pandemic and 
Asian respondents had the lowest; these results agree 
with those from a national survey in 2022,28 but disagree 
with pre-pandemic time-use data.25 White respondents 
showed the most responsiveness to changes in disease 
incidence, probably reflecting an increased ability to work 
from home. We note, however, that a lack of demo
graphic-specific and social group-specific mobility 
data could limit our inference of non-pandemic contact 
patterns across social categories, suggesting potential 
biases in our baseline contact estimates by social category 
(appendix p 26). Similarly, a lack of incidence data at 
the county level disaggregated by demographic group 
precludes us from analysing the effect of group-specific 
disease incidence on group-specific behaviour. Census 
data show that 93% of US counties saw only a 3% or 
smaller change in population size from April 1, 2020, to 
July 1, 2021.61 Therefore, we expect any changes in the 
demographic or social distribution within counties due to 
the pandemic to have negligible effects on the baseline 
contact estimates. There could be additional biases in the 
data that we have not addressed, such as social desirability 
bias, over-representation or under-representation by pol
itical party, and under-representation of rural areas. 
Overall, our work highlights that social heterogeneities in 
contact patterns could be responsible for socially struc
turing transmission risks for respiratory infections and 
could shape the landscape of response to disease. 

In summary, we have developed some of the most 
detailed pandemic and baseline estimates of contact pat
terns in the USA to date, which will be key to informing 
accurate estimates of transmission risk that account for 
spatial clustering. Our results can also aid the development 
of more efficiently targeted interventions. Our work high
lights the value of collecting fine-scale behavioural data and 
the need for long-term longitudinal data collection on 
contact patterns in the USA. We provide some of the first 
evidence that US adult contact patterns might not vary over 
time but do vary across counties, with ramifications for 

understanding the seasonality of respiratory infectious 
diseases. Improving our understanding of contact patterns, 
which are such an integral component of disease trans
mission and key to the implementation of targeted inter
ventions in the context of a disease outbreak, should be 
prioritised in future research efforts. 
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