

Characterizing spatiotemporal trends in self-reported masking behavior in the United States

Juliana C. Taube, Zack Susswein & Shweta Bansal

MIDAS Conference - September 9, 2022

Motivation: Fine-scale heterogeneity in disease transmission & risk

RECTION FOR THIS ARTICLE

Fine-scale spatial clustering of measles nonvaccination that increases outbreak potential is obscured by aggregated reporting data

Masters et al. (2020)

Ignoring spatial heterogeneity in drivers of SARS-CoV-2 transmission in the US will impede sustained elimination Susswein et al. (2021)

Contribution

bias

Bradley et al. (2021)

Unrepresentative big surveys significantly overestimated US vaccine uptake

Develop fine-scale, debiased spatiotemporal estimates of mask-wearing

C14 In the past 5 days, how often did you wear a mask when in public?

- \bigcirc All the time (1)
- \bigcirc Most of the time (2)
- \bigcirc Some of the time (3)
- \bigcirc A little of the time (4)
- \bigcirc None of the time (5)

 \bigcirc I have not been in public during the past 5 days (6)

1. Dichotomize responses

C14 In the past 5 days, how often did you wear a mask when in public?

I have not been in public during the past 5 days (6)

- 1. Dichotomize responses
- 2. Aggregate to county-month

Observed masking proportion by county for Feb. 2021

(0.2,0.3] (0.3,0.4] (0.4,0.5] (0.5,0.6] (0.6,0.7] (0.7,0.8] (0.7,0.8] (0.8,0.9] (0.9,1] NA

[0,0.2]

- 1. Dichotomize responses
- 2. Aggregate to county-month
- 3. Bayesian binomial regression

$M_{i} \sim Binomial(N_{i}, p_{i})$ $logit(p_{i}) \sim Normal(\mu_{i}, \sigma)$ $\mu_{i} = \beta_{0} + \beta_{1} \cdot \text{population density}$

- 1. Dichotomize responses
- 2. Aggregate to county-month
- 3. Bayesian binomial regression
- 4. Raking & resampling

age

gender

education

https://www.freepik.com/free-vector/diverse-crowd-people-different-ages-races_7732608.htm

- 1. Dichotomize responses
- 2. Aggregate to county-month
- 3. Bayesian binomial regression
- 4. Raking & resampling
- 5. Debias with ground-truth vaccination data

US COVID-19 Vaccination Tracking

• Partial vaccination (1+ dose) coverage

bias = CTIS vaccination prop. — true vaccination prop.

Addressing survey biases

Model smooths over noisy proportions from small sample sizes

Addressing survey biases

Unrepresentative samples slightly overestimate masking

Addressing survey biases

Social desirability and non-response biases overestimate masking

Masking is spatially heterogeneous and higher in urban areas

Masking exhibit

hal cases & vaccines

Can social sensing approaches help reduce survey bias?

C16 In the past 7 days, when out in public places where social distancing is not possible, about how many people would you estimate wore masks?

All of the people were wearing masks (1)

Most of the people were wearing masks (2)

Some of the people were wearing masks (3)

A few of the people were wearing masks (4)

None of the people were wearing masks (5)

I have not been out in public places in the past 7 days (6)

Takeaways

Masking varies spatiotemporally across the L

Fine-scale spatiotemporal behavioral data are critical to understanding disease-behavior dynamics

